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Abstrad We consider the electronic structure of a magnetic film inserted between distinct non- 
magnetic materials. Assuming a particular functional form for the electrostatic and magnetic 
interactions, we obtain an exact solution to the energy spectrum. Several static and uansport 
proper(ies of the solution are discussed, 

Recent advances in experimental techniques have provided an extraordinary tool to 
investigate the behaviour of electrons in heterostructures created by alternating magnetic and 
non-magnetic films. The giant magnetoresistance observed for very thin layered systems 
has attracted a great deal of attention in recent years [l]. It has been established that 
this extraordinary magnetotransport effect rapidly decreases as the film thickness increases 
beyond the range of 100 A and becomes quite small (typically a few per cent). (For an 
updated review on giant magnetoresistance in magnetic multilayers and related structures, 
see review lecture by Parkin [2].) The theoretical approaches that have been proposed to 
explain this phenomenon [3,4] correctly aSsume that for thin films the magnetic field plays 
no role in the dynamics of the electrons. and its only effect is to provide a mechanism to 
overturn the antiferromagnetic layers. 

It is the purpose of this work to study the electron states under different conditions. 
Here we assume that the film thickness is much larger, and we will find that, in such a 
case, the magnetic field plays an important role in the electron dynamics. We shall derive 
for this regime some interesting and unusual physical effects. Our system will consist of 
a single ferromagnetic layer surrounded by two different non-magnetic materials, which 
may be metals or semiconductors (figure 1). The electrons will be subject to the following 
interactions: an electrostatic potential, V ( x ) ,  which changes at the interfaces of the system; 
a magnetic field, B(x), present inside the film and which results from the spontaneous 
magnetization of the ferromagnetic layer; and an exchange field, B’(x), which couples to 
the electron spin and is also confined to the film. In figure 1 we have depicted schematically 
an idealized form of these interactions. In our analysis, we will assume diffuse surfaces 
characterized by an average width e .  This parameter can be varied experimentally. As a first 
approximation we ignore surface roughness. The typical strength of these interactions can be 
characterized by the asymptotic potential differences, parametrized as V i  = Vo(1 7 A/4)*. 
The magnetic interaction is given by ( eA/c )* /2m.  where A = Bod, with BO being the 
magnetic field in the interior of the film and 2d its width. Finally, the exchange energy is 

7 Present address. 

0953-8984/94/183329+07$19.50 0 1994 IOP Publishing Ltd 3329 



3330 M Calvo 

ehB’/Zmc, with B’ the exchange field inside the layer. We introduce dimensionless scales 
for these interactions by dividing them by h2/2mdz. Let 

a’ = (ed2Bo/hc)’ = (pod/fi)’ 6 = 2mdzVo/hz a’ = edZB’/hc (1) 

with po = edBo/c. An estimate of these parameters can be obtained by assuming Vo = 1 eV, 
Bo = IO4 G and B’ = IO6 G. In this case we find a‘/B = 0.1 and a’/p = 107d2 (cm). 
Thus for d 5 cm, the magnetic 
term may be comparable or larger. In addition, we see that a’, ,3 and a’ >> 1 in all this 
range. 

cm, the potential term is dominant; but for d 2 

- d  

V +  

/I + I 
d X 

Figure 1. (a )  Schematic diagram of magnetidnon-nugnetic structure. Typical profiles of the 
electrostatic potentid and the magnetic field are plotted (-1, as functions of x, in (b)  and (c). 
respectively. Except for the strength, the exchange field is similar to (c). The length 6 measures 
the width of the interface region. The broken curves in (b) and ( c )  represent, schematically. 
the functional forms for which the exact solution is derived, equation (2). Note that in this case 

= d so that the interface is rather diffuse, 
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In the following we shall consider an exact solution to the one-electron eigenvalue 
problem by choosing a particular functional form for these interactions, which qualitatively 
reproduces the forms depicted in figure 1. Our choice is 

V(x) = Vo[tanh(x/d) - A/4Iz 

B’(x) = B’I1 -tanhz(x/d)]i 

B(x) = Bo[l - tanhZ(x/d)]2 

for which the corresponding vector potential is 

A(x) = Bodtanh(x/d)c. (3) 

The graphical representation of these functions is shown in figure 1. In addition, we 
assumed A 5 2 so that the minimum of V(x) occurs within 1x1 < d/2. The resulting 
Schrodinger equation becomes 

H @  = E @  

with 

H = - ( h z / 2 m ) d z / d r 2 + [ p y + ( e B ~ d / c )  tanh(x/d)12/2m+p:/2m+ VO[tanh(x/d)- A/4I2 

f fiB’[1 - tanh2(x/d)] (4) 

where p y  and pz are the conserved components of the momentum. This equation is readily 
converted into dimensionless form 

(-dZ/dzZ + A:(tanh z + tanh 2:)’ + C+)&(Z) = 0 (5) 

where 

z = x / d  AZ,=o12+P&ol’ tanh 20‘ = o12p,/A:po - gA/4A: 

and 

The solutions of equation (5) are well known [5].  We shall reproduce here only its most 
relevant aspects. Depending on the value of p y ,  the spectrum consists of a finite set of 
discrete hound states, localized inside the film about the point -zo. plus a set of continuum 
extended states. For larger values of p y ,  and depending on their energy, there will only be 
extended states on one side of the film, or throughout all space. Extended states behave 
asymptotically as free particles, which either bounce specularly from the film, as in the 
former case, or cross it, as in the latter case. The bounded spectrum is 

+- - bi + e 16 (1 - $) TU’] 
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with n = 0,1,2,  , . . , nm(py ) ,  and where 

b n -  - (A: + a)'/* - n - f ,  

In addition, the states E, (py )  only exist if py is within the interval 

I P ~ / w  - B A / k Z I  < bi/az. 

For the extended states the spectrum is 

(8) 

E @ )  = + (pY *PO)' t p:1/2m + Vo(1 f A/4?. (9) 

Here -/+ indicates the asymptotic limits x >> d or x << d ,  respectively. We saw above 
that typically a', p >>a', so let us simplify our analysis and drop a'. 

The discrete spectrum is plotted as a function of p y  in figure 2. We note that, for fixed 
n. the resulting curves are parabolae with their centres and their curvatures depending on 
n. Let us define an effective mass as 

m; = m / ( l  - a /b,,). (10) 2 2  

continuum 

b inf 

E 

I 
I + 

Figure 2. The discrete speemm E,@)) plotted as a function of n and p u ,  For each n. the 
curve E.(p,) approaches lhe parabolae (pv * p 0 ) ~ / 2 m  + V, at the limits of the stability rangc, 
equation (8). The mows indicate Ule points of instability for E , @ ) ) .  Extended stales at each 
side of the film correspond lo the continuum levels contained inside lhe pmbolae centred 81 

*Po.  
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Thus we find that the relative strength of a’ and ,S determines the sign of m; , In addition. 
for fixed a’ and p, m; increases monotonically with n and diverges at b. = a. Thereafter 
it becomes negative and keeps increasing until n,(py)  is reached. The physical origin for 
this behaviour results from an interplay between the electrostatic interaction, which increases 
in the proximity of the film boundaries (or p y  approaching the stability limits, equation (8)), 
and the magnetic interaction, which decreases in the same limits. For small n, the potential 
term dominates and the energy increases. For larger n, the magnetic interaction is enhanced 
(by the Lorentz force) and it becomes the dominant term. An immediate consequence of 
this fact is that the drift velocity along the y axis 

U,” = aE, (p , ) /ap ,  = [P,  + P ~ , T A / ~ ( ~ :  - C Y ’ ) I / ~ ;  (11) 

may be positive or negative depending on the index n. There are two limiting cases worth 
noting. If CY = 0, the p y  dependence of E, becomes p: /2m.  In this case the motion in the 
xy plane is decoupled, being a free particle in the y axis. For p = 0 and CY # 0, we can 
easily derive 161 

where tanhzo is given in equation (6). This result represents the usual Landau formula 
where the magnetic field is evaluated at the position of the guiding centre -zo. Deleted 
terms are readily calculated and represent deviations produced by the inhomogeneity of 
the magnetic field. An unusual property of the spectrum is the coexistence of bound and 
extended states of equal energy. This fact is a consequence of the gauge field, and is 
akin to the Bohm-Aharonov effect. For simplicity we consider the p = 0 case. Then 
there will be no electrostatic forces and, moreover, the magnetic field vanishes identically 
outside the film. However, the vector potential does not. This pure gauge term produces an 
asymptotic ‘potential’ that confines electrons to the film and prevents them from tunnelling 
to the degenerate extended states on the outside. This condition will obviously prevail 
under gauge transformations. Another interesting property of the spectrum is the confining- 
deconfining effect of the magnetic field. Imagine that CY = 0 and A = 0. There will 
be an energy range for which states are confined to the film ( E  c VO), This occurs if 
( f l  + $)’/’ - n - f > 0. As a is increased, the condition for boundedness becomes 

[(CY’+ p + $)l” - n - $1’ > ~ ~ ‘ p , / p o  = apsd / f i .  (13) 

We conclude that for p y  > py, where (rjYd/ut)’I3 = $(@ - n - i), there will be a range of 
(Y for which this condition is violated and the state n unbounded. If a is further increased, 
equation (13) is again satisfied and the state becomes bounded again. This effect can be 
understood classically by noting that the Lorentz force transfers kinetic energy, p; /Zm,  into 
kinetic energy along the x direction. If this transfer is large enough. the electron overcomes 
the potential barrier and escapes. However, if the magnetic field is too strong, so that the 
cyclotron radius is smaller than the potential range, the electron remains confined. 

We will now consider the ground state of N electrons. Let EF be the Fermi energy. 
For a given n, En(py )  + p: /2m = EF defines an ellipse or a hyperbola depending on the 
sign of m i .  The physical state corresponds to the intersection of the stability strip in p,, 
equation (S), and the conics. Clearly the Fermi surface of the extended states are spheres 
centred at py = i p o .  These states may be either one-sided or fully extended. It is very 
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simple to determine the conditions for which there are no fully extended states. This will 
happen if gA/40r2 < 1 and 

Let us evaluate the Hall current along the y axis, in the case A # 0. We assume that 
the system is enclosed inside a cube of side L, with the film located at the midplane and 
L >> d. By imposing periodic boundary conditions py and pr  become discretized. Let 
n denote the number of nodes that an eigenfunction has along the x axis. This labelling 
coincides with that of our bound states and will also include extended states. For a given 
n and pz. the contribution to the current is 

since E,(p,maX) = E , ( p T )  = EF. Let us note, though, that the current carried by the full 
set of bound states in the range of equation (8) is not zero. 

We will next consider an interesting effect that results as a response of the system to an 
electric field applied in the y direction. Let us assume that equation (14) is satisfied. The 
momentum will change according to 

dpy/dt = -eEy.  (16) 
For the extended states this field will produce a current in the y direction, but for bounded 
ones, along the x direction. For any given bound state n, py will decrease (EY z 0) until the 
state reaches the lower end of the stability range p y ,  and is ejected into the continuum at the 
right of the film. If the direction of the field is reversed ( E y  0). the effect is also reversed. 
Let us assume that A > 0 so that E,(#) > E , ( p T p ) .  If for given E F  - p:/Zm a band of 
bounded levels En(py) is completely full or empty, it will not contribute to the current. On 
the other hand, a partially filled band will produce a current towards the right of the film. 
In this case, electrons are captured from the filled extended states at E.(p;”’), transported 
across the film. and ejected into the extended vacant states at En(#), If the electric field 
is reversed, no transport will take place because recipient states at E.($’) are occupied. 
An idealized arrangement for displaying this effect consists of two concentric cylinders of 
different materials, so A # 0, in which the magnetic layer is inserted in between. The inner 
cylinder has a concentric hole through which an alternating magnetic flux is passed. The 
induced electric field will be parallel to the film, and if V,,, - vi. = VoA < 0, a continuous 
current will flow radially outwards. It is not difficult to derive an expression for this current. 
However, such a result would not be very meaningful because the effect of impurities and 
surface imperfections is being left out of the analysis. In the case of bulk impurities and for 
films of thickness in the range cm, a sufficient degree of purity may be achieved so 
that asb >> 1 is satisfied, where sb is the bulk mean free time, C2 = @A/md2)(1 - tanh’ zo) 
and lzol 1. In addition, an eigenstate n centred at -ZO will have a width 

I(~o)-ddj[A(l - tanh2~o)1”2 < d  (17) 
provided n << A. If we wsume that the surface impurity potential is localized at, say, about 
x = 1 Sd, and confined to a small fraction of d, it will only affect states at a distance 1(  1.5) 
from it, by inducing transitions to nearby overlapping bound or extended states on the same 
side of the interface. As a result of this, the levels in the neighbourhood of this region will 
be distorted and the picture of level instability modified. However, we expect that levels 
inside the film will be little affected and that their transport properties will remain, at least 
qualitatively, the same. 
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